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Abstract 

Predicting neurological recovery in patients following 
cardiac arrest is a critical and intricate endeavor in 
medical research. This study by team MIWEAR introduces 
a groundbreaking methodology that leverages 
Electroencephalogram (EEG) signals transformed into 
mel-spectrograms as part of the 'Predicting Neurological 
Recovery from Coma After Cardiac Arrest: The George B. 
Moody PhysioNet Challenge 2023'. By adapting these 
complex sequences into two-dimensional image regression 
structures, we tailored the data for advanced 
convolutional neural networks. Our innovative 
"MelicientNet" model synergistically combines the mel-
spectrogram approach with the EfficientNet family, 
particularly EfficientNet-B0 and EfficientNetV2-S. This 
union, bolstered by the architectures' compactness and 
precision, offers a formidable solution for our computer 
vision applications. Additionally, our strategy integrates 
comprehensive patient profiles, amalgamating 
demographic and recording data into our predictive 
framework. Employing data from seven diverse hospitals, 
our best performing algorithm achieved a Challenge score 
of 0.71, and a ranking of 4th place overall. 
 
 
 
 
1. Introduction  

Cardiac arrest is a pressing global health issue, with 
survival rates varying widely based on location. A 
significant post-resuscitation challenge is potential brain 
injury, the leading cause of death among survivors. Most 
survivors are comatose upon ICU admission, and early 
prognosis is crucial in guiding care decisions [1]. Current 
prognostic methods, however, have shown inconsistencies. 
Electroencephalography (EEG) presents a promising tool 
for objective brain monitoring post-cardiac arrest [2]. Yet, 
manual EEG interpretation is resource-intensive and 
requires specialized expertise. 

To address this, the George B. Moody PhysioNet 
Challenge 2023 [3][4], backed by the International Cardiac 

Arrest REsearch (I-CARE) consortium, offers an extensive 
EEG dataset from over 1,000 post-cardiac arrest comatose 
patients [5]. Our study leverages this dataset, transforming 
EEG signals into mel-spectrograms, simplifying the data 
representation for machine learning applications. Our 
model, "MelicientNet", combines mel-spectrograms with 
EfficientNet architectures and integrates demographic and 
recording data for a comprehensive prognosis approach. 
The following sections detail our methodology, results, 
discussions, and conclusions. 

 
2. Methodology 

2.1 System Framework 

Our proposed model, termed "MelicientNet," integrates 
the concept of mel-spectrograms with the architectural 
strengths of EfficientNet. As illustrated in Fig. 1, the 
MelicientNet framework begins with the preprocessing of 
EEG signals. These preprocessed signals are then 
converted into mel-spectrograms. Subsequently, we 
employ two variants of the EfficientNet architecture—
EfficientNet-B0 and EfficientNetV2-S—to analyze the 
mel-spectrograms. The predictions derived from both 
EfficientNet versions are then amalgamated with 
demographic data and recording specifics through a 
random forest model to generate final predictions. 

 

 
Fig. 1. Overview of the MelicientNet Framework 
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2.2 Evaluation Methodology 

In our study, we utilized the Stratified K-fold validation 
method (K=5), grouped by resident, to ensure stratification 
according to the target variable: the Cerebral Performance 
Category (CPC) scale. This approach guarantees that each 
fold possesses a comparable distribution of CPC values. 
While the AUC serves as our primary evaluation metric, 
we also reference the challenge metric (TPR at a FPR of 
0.05) for additional validation. Notably, considering the 
ordinal nature of the CPC value, we approached the CPC 
classification task as a regression problem, utilizing the 
MSE metric as our objective function. 

2.3 Data Preprocessing 

EEG recordings were consistently captured using 19 
electrodes, adhering to the international 10-20 system. In 
the preprocessing phase, our initial step was to standardize 
the order of the 19 channels to the sequence. Subsequently, 
the data from these 19 channels was transformed into 18 
bipolar channels, namely: 'Fp1-F7', 'F7-T3', 'T3-T5', 'T5-
O1', 'Fp2-F8', 'F8-T4', 'T4-T6', 'T6-O2', 'Fp1-F3', 'F3-C3', 
'C3-P3', 'P3-O1', 'Fp2-F4', 'F4-C4', 'C4-P4', 'P4-O2', 'Fz-
Cz', and 'Cz-Pz'. We opted for bipolar referencing due to 
its prevalent utility in clinical settings, and the fact that 
many prior quantitative EEG analyses and models related 
to cardiac arrest have employed bipolar channels [2]. 
Additionally, each bipolar channel underwent processing 
with a 2nd order Butterworth band-pass filter, with cut-off 
frequencies established at 0.5 Hz and 50 Hz. This was 
followed by resampling to a uniform frequency of 128 Hz. 
During our analysis, we identified extended flat zero 
segments in many bipolar signals. To address this, we 
eliminated signal segments exhibiting flat zeros over a 10-
second window. 

 

 
Fig. 2. Representative Mel-Spectrograms:       

Averages from 18 Channels Across Five Distinct CPC 
Levels Over Time 

2.4 Spectrogram Creation 

For our study, we converted one-hour segments from 
each bipolar channel into mel-spectrograms utilizing the 
'librosa' library. We adopted a hop length of 10 seconds, 
ensuring that the duration of each hour is represented by 
360 units. Our analysis concentrated on frequencies 
ranging from 0 to 45 Hz, resulting in mel-spectrograms 
with dimensions of 360x360. Fig. 2 provides illustrative 
examples, showcasing the average mel-spectrograms 
across 18 channels for five distinct CPC levels at varying 
times. For training purposes, we utilized the final 12 hours 
of data for each patient, translating to 12 mel-spectrogram 
images.  

Before processing each mel-spectrogram image through 
our model, we enhanced its robustness by employing five 
specialized image augmentation techniques: 
1. Adjustments to Brightness and Contrast, randomized 

within a 0.5 boundary (probability: 0.8). 
2. Frequency Masking, capped at a 0.5 masking rate 

(probability: 0.8). 
3. Application of Gaussian Blur, with a blur intensity set 

between 3 and 7 (probability: 0.6). 
4. Time-based Shifting, limited to a 0.2 shift percentage 

(probability: 0.6). 
5. The Cutout technique [6], which introduces up to 8 

random holes, each with dimensions not exceeding 
45x45 (probability: 0.6). 

2.5 Model Architecture 

EfficientNet-B0 [7] and EfficientNetV2-S [8] are 
compact, efficient CNN models optimized for image 
classification. EfficientNet-B0 achieved 77.1% top-1 
accuracy on ImageNet with only 5.3M parameters. 
EfficientNetV2-S improved accuracy to 79.8% while 
reducing computations. Their efficiency and accuracy at 
processing complex patterns make them well-suited for 
analyzing EEG mel-spectrograms. We evaluate their 
effectiveness at predicting neurological outcomes within 
our proposed MelicientNet framework. 

2.6 Ensemble Techniques 

Alongside the EEG signals, our dataset also captures a 
comprehensive set of patient-specific attributes. This 
includes the patient's age, gender, the duration from 
cardiac arrest to the return of spontaneous circulation 
(ROSC), the location of the cardiac arrest (either out-of-
hospital, denoted by OHCA, or in-hospital), the nature of 
the rhythm (whether it was shockable or not), and the 
targeted temperature management (TTM) applied. While 
this demographic and clinical data provides a rich context, 
our study further integrates these features with the 
predictions obtained from the mel-spectrograms. To 
optimize our predictive accuracy, we utilized a second-
level random forest (RF) regressor model, amalgamating 
these diverse data sources for a more refined prediction. 
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2.7 Parameter Configurations 

To optimize our model, we employed the Adam 
optimizer, initiating with a learning rate of 1e-4. This rate 
underwent a decay process via the CosineAnnealingLR 
scheduler, diminishing to a minimum value of 1e-6 
throughout the training duration. Given the limitations of 
our hardware, we opted for a batch size of 16, ensuring 
efficient model training. The entire training spanned 10 
epochs, a duration deemed adequate for model 
convergence as evidenced by the stabilization of the 
validation loss. The local training process was executed on 
an NVIDIA 2080Ti GPU. Our model, along with the 
optimizer, loss function, and associated configurations, 
was developed using the PyTorch framework. At the 
culmination of each epoch, checkpoints were established. 
The checkpoint exhibiting the most minimal validation 
loss was earmarked as the definitive model for evaluations. 

 
3. Results  

In our pursuit of predicting neurological outcomes, we 
meticulously analyzed the final 12 hours of the provided 
dataset. To validate the robustness of our results, we 
employed a 5-fold stratified cross-validation, 
benchmarking our outcomes using both the AUC and the 
challenge metric. 

 
Table I: Comparison of different methods based on 
5-fold cross validation results from training data. 

Methodology AUC  Challenge score  
RF on Demographic and 
Recording Information 0.75 0.25 

EfficientNet-B0 0.86 0.57 
EfficientNetV2-S 0.85 0.59 

Ensemble 0.88 0.62 
 

Table I elucidates the AUC and challenge scores 
derived from diverse methodologies based on 5-fold cross 
validation results from training data. The ensemble model, 
which amalgamates predictions from EfficientNet-B0, 
EfficientNetV2-S, and the demographic and recording data, 
distinctly outperforms the other methods. Our ensemble 
algorithm provided a final test Challenge score of 0.71 
(with an AUC of 0.92), achieving a final official ranking 
of 4th place. 

  
Table II: Detailed examination of 5-fold cross 
validation results across training data folds. 

Fold AUC Challenge score 
0 0.89 0.61 
1 0.89 0.75 
2 0.92 0.68 
3 0.90 0.70 
4 0.82 0.60 

Upon examining Table II, it's evident that the AUC 
value remains relatively stable across different validation 
folds, showcasing the model's consistent performance. In 
contrast, the challenge score exhibits more variability, 
underscoring the importance of using multiple metrics for 
a comprehensive evaluation. 

 
Table III: Analytical breakdown by hospital based 

on training data 
Hospital AUC Challenge score 

A 0.90 0.65 
B 0.69 0.36 
D 0.86 0.64 
E 0.94 0.95 
F 0.85 0.69 

 
The dataset spanned seven renowned hospitals, each 

bringing unique datasets to the table. Table III offers a 
granular breakdown of the AUC and challenge scores 
across these institutions. The variance in scores across 
hospitals highlights the heterogeneity in data and 
emphasizes the importance of a model that can generalize 
across diverse datasets. The amalgamation of datasets from 
two hospitals and the reservation of one for hidden testing 
further accentuates the complexity and challenges faced in 
this endeavor. 

 
4. Discussions and Conclusions 

4.1 Discussions 

The ensemble model's standout performance, as 
evidenced by its final test AUC value of 0.92 and challenge 
score of 0.71, is a testament to the synergistic effect of 
combining diverse predictive models with demographic 
and recording data. This approach not only captures the 
intricate patterns within the EEG signals but also 
contextualizes them with patient-specific information, 
leading to more nuanced and accurate predictions. The 
ensemble model achieves a 4th place ranking on the 
leaderboard, demonstrating its robustness through external 
validation. 

Diving deeper into the hospital-specific results 
presented in Table III, we observe a range of AUC values 
from 0.69 to 0.94 across training data folds. This variance 
underscores the inherent challenges in developing a 
universally applicable model across diverse datasets. Each 
hospital, with its unique patient demographics, equipment 
standards, and treatment protocols, contributes data with 
distinct characteristics. For instance, the relatively lower 
AUC value of 0.69 for Hospital B in the training data might 
indicate a more complex patient cohort or differences in 
data recording practices compared to other institutions. 

Lastly, the stability of the AUC value across different 
validation folds, juxtaposed with the variability in the 
challenge score, offers a nuanced insight. While the 
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model's ability to rank predictions remains consistent, its 
absolute predictive accuracy can fluctuate. This 
observation suggests that while the model has learned 
general patterns effectively, there might be specific 
scenarios or edge cases where its predictions are less 
reliable. 

4.2 Conclusions 

The challenge of predicting neurological recovery from 
coma after cardiac arrest is a complex and multifaceted one, 
with profound implications for patient care and clinical 
decision-making. In our endeavor to address this challenge, 
we have presented a novel approach that combines the 
power of mel-spectrograms with state-of-the-art 
convolutional neural network architectures, specifically 
the EfficientNet family. 

Our methodological strengths lie in the innovative 
transformation of EEG signals into a two-dimensional 
format, allowing us to harness the prowess of image-based 
deep learning models. The incorporation of EfficientNet-
B0 and EfficientNetV2-S, both of which strike a balance 
between computational efficiency and predictive accuracy, 
further bolsters our solution. Additionally, our ensemble 
strategy, which amalgamates predictions from multiple 
models with demographic and recording data, ensures a 
holistic and nuanced prediction. 

However, as with any scientific endeavor, our approach 
is not without its limitations. The potential loss of temporal 
dynamics in EEG signals, variability across hospitals, and 
the inherent complexities of an ensemble model are 
challenges that we recognize. Moreover, the absence of 
trend analysis over consecutive hours in EEG signals 
might be a missed opportunity in capturing more granular 
insights. 

In conclusion, our work represents a significant stride in 
the realm of neurological recovery prediction. By melding 
advanced deep learning techniques with clinical data, we 
hope to pave the way for more informed and patient-centric 
care decisions in the aftermath of cardiac arrests. As the 
field evolves, we remain committed to iterating on our 
approach, always with the aim of enhancing patient 
outcomes and aiding clinicians in their vital work. 
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